Math 255B Lecture 3 Notes

Daniel Raban

January 10, 2020

1 The Fredholm-Riesz Theorem

1.1 The Fredholm-Riesz theorem

Theorem 1.1 (Fredholm-Riesz). Let B be a Banach space, and let T € L(B, B) be com-
pact. Then 1 — T is Fredholm, and ind(1 —T') = 0.

Remark 1.1. If B is a Hilbert space, we can prove this more easily by using the fact that
compact operators can be approximated by finite rank operators.

Proposition 1.1. Let T' € L(B, B) be compact. Then
1. ker(1 —T) is finite dimensional.
2. im(1 —T) is closed.

Proof. 1. Let x, € ker(1 — T) with [jz,|| < 1. Then z, = T, has a convergent
subsequence. Then the identity map on ker(1—7') is compact, so dim ker(1—7) < co
(by Riesz’s theorem).

2. Let y € im(1 —T), and let =, € B be such that y, = (1 — T)x,, — y. Consider
dist(zn, ker(1 — T)) = inf,cker(1—7) [[Zn — 2||. There exists some z, € ker(l —T)
realizing this infimum: ||z, — 2z, || = dist(z,, ker(1 — T)).

We claim that the sequence (z, — z,) is bounded: otherwise, ||, — z,|| — oo along
—Z

a subsequence. Let w,, = ”LT:”’ S0
(1-T)w, = (1 —T)(xn — 2n) _ n 0
n - - .
(e [%n — 20|

Passing to a subsequence, we may assume that Tw, — v € B and then w, — v,
where v € ker(1 —T). Now

=1

= 2 — dist(z,, ker(1 — T
dist(wy, ker(1 —T)) =  inf lan = 20 = 2]| _ dist(@n, ker( )
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for all n. This proves the claim.

Passing to a subsequence, we may assume that T'(x, — z,) — ¢ € B. Also, y, =
(1 —=T)(zp — 2n) = Y, SO Ty, — 2, — y +{ = g. Since T is continuous, (1 —71')g =
limy, 500(1 = T)(zp, — 2n) =y. Soy €im(1 - 1T). O

1.2 Adjoints of inclusions and quotients
To show that dim coker < oo, we will use duality arguments:

Definition 1.1. If By, By are Banach spaces with duals By, B3 and bilinear maps (z, ),
Bj x B — C and if T' € L(B1, Bz), then the adjoint 7" L(B3, BY) is defined by

(Tx,n)y = (x,T"n), Vx € By,n € B;.

Definition 1.2. If B is a Banach space and W C B is a closed subspace, the annihilator
We C B* is given by
We={¢eB":(x,§) =0Vx € W}.

Proposition 1.2. Let B be a Banach space, and let W C B be a closed subspace.

1. Let i : W — B be the inclusion map. Then i* : B* — W* wvanishes on W° and
induces an isometric bijection B*/W° — W*.

2. Let q : B — B/W be the quotient map. Then the adjoint ¢* : (B/W)* — B* is an
isometry with the range W°.

Proof. 1. We have (iz,§) = (x,1*¢), so i*¢ is the restriction of £ to W. So keri* = W°.
i* . B* — W™ is surjective by Hahn-Banach.

2. We have (qz,n) = (x,q*n), so ¢* : (B/W)* — B* sends ¢*n to x — (qz,n). So if
q*n = 0, then n = 0; i.e. ¢* is injective. Also, im ¢* C W?, and in fact, im ¢* = We: If
& € W°, define n by (qz,n) = (x,§) and £ = ¢*n. Check that the norms are equal. [

1.3 Proof of the Fredholm-Riesz theorem

Recall that T' € L(B, B) is compact. We want to show that coker(1 — T') is finite dimen-
sional, and we know that it is closed.

Proof. Apply (B/W)* = W?° with W =im(1 —T).
(im(1-T))°={{eB": (1 -T)z,§) =0Vx € B} =ker(l —T7).

T* is compact, so dim(im(1 — 7"))° < oo. This shows that (coker(1 —T'))* = ker(1 —T™),
so dim coker(1 —T") = dimker(1 — 7%) < co. So 1 — T is Fredholm.
Finally, for 0 <t <1,

ind(1-7)=ind(1 —tT) =ind 1 = 0. O
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