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1 The Fredholm-Riesz Theorem

1.1 The Fredholm-Riesz theorem

Theorem 1.1 (Fredholm-Riesz). Let B be a Banach space, and let T ∈ L(B,B) be com-
pact. Then 1− T is Fredholm, and ind(1− T ) = 0.

Remark 1.1. If B is a Hilbert space, we can prove this more easily by using the fact that
compact operators can be approximated by finite rank operators.

Proposition 1.1. Let T ∈ L(B,B) be compact. Then

1. ker(1− T ) is finite dimensional.

2. im(1− T ) is closed.

Proof. 1. Let xn ∈ ker(1 − T ) with ‖xn‖ ≤ 1. Then xn = Txn has a convergent
subsequence. Then the identity map on ker(1−T ) is compact, so dim ker(1−T ) <∞
(by Riesz’s theorem).

2. Let y ∈ im(1− T ), and let xn ∈ B be such that yn = (1 − T )xn → y. Consider
dist(xn, ker(1 − T )) = infz∈ker(1−T ) ‖xn − z‖. There exists some zn ∈ ker(1 − T )
realizing this infimum: ‖xn − zn‖ = dist(xn, ker(1− T )).

We claim that the sequence (xn − zn) is bounded: otherwise, ‖xn − zn‖ → ∞ along
a subsequence. Let wn = xn−zn

‖xn−zn‖ , so

(1− T )wn =
(1− T )(xn − zn)

‖xn − zn‖
=

ηn
‖xn − zn‖

→ 0.

Passing to a subsequence, we may assume that Twn → v ∈ B and then wn → v,
where v ∈ ker(1− T ). Now

dist(wn, ker(1− T )) = inf
z∈ker(1−T )

‖xn − zn − z‖
‖xn − zn‖

=
dist(xn, ker(1− T ))

‖xn − zn‖
= 1
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for all n. This proves the claim.

Passing to a subsequence, we may assume that T (xn − zn) → ` ∈ B. Also, yn =
(1 − T )(xn − zn) → y, so xn − zn → y + ` = g. Since T is continuous, (1 − T )g =
limn→∞(1− T )(xn − zn) = y. So y ∈ im(1− T ).

1.2 Adjoints of inclusions and quotients

To show that dim coker <∞, we will use duality arguments:

Definition 1.1. If B1, B2 are Banach spaces with duals B∗1 , B
∗
2 and bilinear maps 〈x, ξ〉j :

Bj ×B∗j → C and if T ∈ L(B1, B2), then the adjoint T ∗L(B∗2 , B
∗
1) is defined by

〈Tx, η〉2 = 〈x, T ∗η〉1 ∀x ∈ B1, η ∈ B∗2 .

Definition 1.2. If B is a Banach space and W ⊆ B is a closed subspace, the annihilator
W o ⊆ B∗ is given by

W o = {ξ ∈ B∗ : 〈x, ξ〉 = 0 ∀x ∈W}.

Proposition 1.2. Let B be a Banach space, and let W ⊆ B be a closed subspace.

1. Let i : W → B be the inclusion map. Then i∗ : B∗ → W ∗ vanishes on W o and
induces an isometric bijection B∗/W o →W ∗.

2. Let q : B → B/W be the quotient map. Then the adjoint q∗ : (B/W )∗ → B∗ is an
isometry with the range W o.

Proof. 1. We have 〈ix, ξ〉 = 〈x, i∗ξ〉, so i∗ξ is the restriction of ξ to W . So ker i∗ = W o.
i∗ : B∗ →W ∗ is surjective by Hahn-Banach.

2. We have 〈qx, η〉 = 〈x, q∗η〉, so q∗ : (B/W )∗ → B∗ sends q∗η to x 7→ 〈qx, η〉. So if
q∗η = 0, then η = 0; i.e. q∗ is injective. Also, im q∗ ⊆W o, and in fact, im q∗ = W o: If
ξ ∈W o, define η by 〈qx, η〉 = 〈x, ξ〉 and ξ = q∗η. Check that the norms are equal.

1.3 Proof of the Fredholm-Riesz theorem

Recall that T ∈ L(B,B) is compact. We want to show that coker(1 − T ) is finite dimen-
sional, and we know that it is closed.

Proof. Apply (B/W )∗ ∼= W o with W = im(1− T ).

(im(1− T ))o = {ξ ∈ B∗ : 〈(1− T )x, ξ〉 = 0 ∀x ∈ B} = ker(1− T ∗).

T ∗ is compact, so dim(im(1 − T ))o < ∞. This shows that (coker(1 − T ))∗ ∼= ker(1 − T ∗),
so dim coker(1− T ) = dim ker(1− T ∗) <∞. So 1− T is Fredholm.

Finally, for 0 ≤ t ≤ 1,

ind(1− T ) = ind(1− tT ) = ind 1 = 0.
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